Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Sci Rep ; 14(1): 3991, 2024 02 18.
Article En | MEDLINE | ID: mdl-38368484

The number of genome-level resources for non-model species continues to rapidly expand. However, frog species remain underrepresented, with up to 90% of frog genera having no genomic or transcriptomic data. Here, we assemble the first genomic and transcriptomic resources for the recently described southern stuttering frog (Mixophyes australis). The southern stuttering frog is ground-dwelling, inhabiting naturally vegetated riverbanks in south-eastern Australia. Using PacBio HiFi long-read sequencing and Hi-C scaffolding, we generated a high-quality genome assembly, with a scaffold N50 of 369.3 Mb and 95.1% of the genome contained in twelve scaffolds. Using this assembly, we identified the mitochondrial genome, and assembled six tissue-specific transcriptomes. We also bioinformatically characterised novel sequences of two families of antimicrobial peptides (AMPs) in the southern stuttering frog, the cathelicidins and ß-defensins. While traditional peptidomic approaches to peptide discovery have typically identified one or two AMPs in a frog species from skin secretions, our bioinformatic approach discovered 12 cathelicidins and two ß-defensins that were expressed in a range of tissues. We investigated the novelty of the peptides and found diverse predicted activities. Our bioinformatic approach highlights the benefits of multi-omics resources in peptide discovery and contributes valuable genomic resources in an under-represented taxon.


Stuttering , beta-Defensins , Animals , Antimicrobial Peptides , beta-Defensins/genetics , Multiomics , Australia , Cathelicidins/genetics , Anura/genetics , Chromosomes
2.
Sci Rep ; 13(1): 12698, 2023 08 04.
Article En | MEDLINE | ID: mdl-37542170

The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.


Facial Neoplasms , Marsupialia , Humans , Animals , Cathelicidins/metabolism , Facial Neoplasms/pathology , Marsupialia/genetics
3.
Gigascience ; 112022 10 30.
Article En | MEDLINE | ID: mdl-36310247

BACKGROUND: The biodiversity crisis and increasing impact of wildlife disease on animal and human health provides impetus for studying immune genes in wildlife. Despite the recent boom in genomes for wildlife species, immune genes are poorly annotated in nonmodel species owing to their high level of polymorphism and complex genomic organisation. Our research over the past decade and a half on Tasmanian devils and koalas highlights the importance of genomics and accurate immune annotations to investigate disease in wildlife. Given this, we have increasingly been asked the minimum levels of genome quality required to effectively annotate immune genes in order to study immunogenetic diversity. Here we set out to answer this question by manually annotating immune genes in 5 marsupial genomes and 1 monotreme genome to determine the impact of sequencing data type, assembly quality, and automated annotation on accurate immune annotation. RESULTS: Genome quality is directly linked to our ability to annotate complex immune gene families, with long reads and scaffolding technologies required to reassemble immune gene clusters and elucidate evolution, organisation, and true gene content of the immune repertoire. Draft-quality genomes generated from short reads with HiC or 10× Chromium linked reads were unable to achieve this. Despite mammalian BUSCOv5 scores of up to 94.1% amongst the 6 genomes, automated annotation pipelines incorrectly annotated up to 59% of manually annotated immune genes regardless of assembly quality or method of automated annotation. CONCLUSIONS: Our results demonstrate that long reads and scaffolding technologies, alongside manual annotation, are required to accurately study the immune gene repertoire of wildlife species.


Animals, Wild , Genomics , Humans , Animals , Molecular Sequence Annotation , Animals, Wild/genetics , Base Sequence , Genome , Mammals
4.
GigaByte ; 2022: gigabyte47, 2022.
Article En | MEDLINE | ID: mdl-36824518

The numbat (Myrmecobius fasciatus) is an endangered Australian marsupial, and the last surviving member of the Myrmecobiidae family. The numbat regularly undergoes torpor and is unique amongst marsupials as it is the only diurnal and termitivorous species. Here we sequenced the first draft genome of the numbat using 10× Genomics Chromium linked-read technology, resulting in a 3.42 Gbp genome with a scaffold N50 of 223 kbp. A global transcriptome from liver, lung and tongue was also generated to aid genome annotation, identifying 21,465 protein-coding genes. To investigate adaptation to the numbat's termitivorous diet and arid/semi-arid range, we interrogated the most highly expressed transcripts within the tongue and manually annotated taste, vomeronasal and aquaporin gene families. Antimicrobial proteins and proteins involved in digestion were highly expressed in the tongue, alongside umami taste receptors. However, sweet taste receptors were not expressed in this tissue, which combined with the putative contraction of the bitter taste receptor gene repertoire in the numbat genome, may indicate a potential evolutionary adaptation to their specialised termitivorous diet. Vomeronasal and aquaporin gene repertoires were similar to other marsupials. The draft numbat genome is a valuable tool for conservation and can be applied to population genetics/genomics studies and to investigate the unique biology of this interesting species.

5.
PLoS One ; 16(4): e0249658, 2021.
Article En | MEDLINE | ID: mdl-33852625

Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.


Antimicrobial Cationic Peptides/metabolism , Phascolarctidae/microbiology , Animals , Anti-Infective Agents , Antimicrobial Cationic Peptides/pharmacology , Australia , Chlamydia/genetics , Chlamydia/pathogenicity , Chlamydia Infections/epidemiology , Chlamydia Infections/prevention & control , Escherichia coli/genetics , Marsupialia/genetics , Marsupialia/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Phascolarctidae/genetics , Phascolarctidae/metabolism , Cathelicidins
6.
Immunogenetics ; 73(3): 263-275, 2021 06.
Article En | MEDLINE | ID: mdl-33544183

Advances in genome sequencing technology have enabled genomes of extinct species to be sequenced. However, given the fragmented nature of these genome assemblies, it is not clear whether it is possible to comprehensively annotate highly variable and repetitive genes such as those involved in immunity. As such, immune genes have only been investigated in a handful of extinct genomes, mainly in human lineages. In 2018 the genome of the thylacine (Thylacinus cynocephalus), a carnivorous marsupial from Tasmania that went extinct in 1936, was sequenced. Here we attempt to characterise the immune repertoire of the thylacine and determine similarity to its closest relative with a genome available, the Tasmanian devil (Sarcophilus harrisii), as well as other marsupials. Members from all major immune gene families were identified. However, variable regions could not be characterised, and complex families such as the major histocompatibility complex (MHC) were highly fragmented and located across multiple small scaffolds. As such, at a gene level we were unable to reconstruct full-length coding sequences for the majority of thylacine immune genes. Despite this, we identified genes encoding functionally important receptors and immune effector molecules, which suggests the functional capacity of the thylacine immune system was similar to other mammals. However, the high number of partial immune gene sequences identified limits our ability to reconstruct an accurate picture of the thylacine immune repertoire.


Cytokines/genetics , Extinction, Biological , Immunoglobulins/genetics , Major Histocompatibility Complex/genetics , Marsupialia/genetics , Receptors, Antigen, T-Cell/genetics , Toll-Like Receptors/genetics , Amino Acid Sequence , Animals , Cytokines/immunology , Genome , Immune System/immunology , Immunoglobulins/immunology , Major Histocompatibility Complex/immunology , Marsupialia/immunology , Molecular Sequence Annotation , Receptors, Antigen, T-Cell/immunology , Sequence Homology , Toll-Like Receptors/immunology
7.
Nature ; 592(7856): 756-762, 2021 04.
Article En | MEDLINE | ID: mdl-33408411

Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.


Biological Evolution , Genome , Platypus/genetics , Tachyglossidae/genetics , Animals , Female , Male , Mammals/genetics , Phylogeny , Sex Chromosomes/genetics
8.
GigaByte ; 2021: gigabyte35, 2021.
Article En | MEDLINE | ID: mdl-36824341

Biodiversity is declining globally, and Australia has one of the worst extinction records for mammals. The development of sequencing technologies means that genomic approaches are now available as important tools for wildlife conservation and management. Despite this, genome sequences are available for only 5% of threatened Australian species. Here we report the first reference genome for the woylie (Bettongia penicillata ogilbyi), a critically endangered marsupial from Western Australia, and the first genome within the Potoroidae family. The woylie reference genome was generated using Pacific Biosciences HiFi long-reads, resulting in a 3.39 Gbp assembly with a scaffold N50 of 6.49 Mbp and 86.5% complete mammalian BUSCOs. Assembly of a global transcriptome from pouch skin, tongue, heart and blood RNA-seq reads was used to guide annotation with Fgenesh++, resulting in the annotation of 24,655 genes. The woylie reference genome is a valuable resource for conservation, management and investigations into disease-induced decline of this critically endangered marsupial.

9.
Genes (Basel) ; 10(11)2019 10 25.
Article En | MEDLINE | ID: mdl-31717707

Conservation initiatives are now more crucial than ever-over a million plant and animal species are at risk of extinction over the coming decades. The genetic management of threatened species held in insurance programs is recommended; however, few are taking advantage of the full range of genomic technologies available today. Less than 1% of the 13505 species currently listed as threated by the International Union for Conservation of Nature (IUCN) have a published genome. While there has been much discussion in the literature about the importance of genomics for conservation, there are limited examples of how having a reference genome has changed conservation management practice. The Tasmanian devil (Sarcophilus harrisii), is an endangered Australian marsupial, threatened by an infectious clonal cancer devil facial tumor disease (DFTD). Populations have declined by 80% since the disease was first recorded in 1996. A reference genome for this species was published in 2012 and has been crucial for understanding DFTD and the management of the species in the wild. Here we use the Tasmanian devil as an example of how a reference genome has influenced management actions in the conservation of a species.


Endangered Species , Genome , Genomics/standards , Marsupialia/genetics , Animals , Genotyping Techniques/standards , Reference Standards
10.
Bioorg Med Chem ; 27(18): 4185-4199, 2019 09 15.
Article En | MEDLINE | ID: mdl-31395511

Chlamydia trachomatis high temperature requirement A (CtHtrA) is a serine protease that performs proteolytic and chaperone functions in pathogenic Chlamydiae; and is seen as a prospective drug target. This study details the strategies employed in optimizing the irreversible CtHtrA inhibitor JO146 [Boc-Val-Pro-ValP(OPh)2] for potency and selectivity. A series of adaptations both at the warhead and specificity residues P1 and P3 yielded 23 analogues, which were tested in human neutrophil elastase (HNE) and CtHtrA enzyme assays as well as Chlamydia cell culture assays. Trypsin and chymotrypsin inhibition assays were also conducted to measure off-target selectivity. Replacing the phosphonate moiety with α-ketobenzothiazole produced a reversible analogue with considerable CtHtrA inhibition and cell culture activity. Tertiary leucine at P3 (8a) yielded approximately 33-fold increase in CtHtrA inhibitory activity, with an IC50 = 0.68 ±â€¯0.02 µM against HNE, while valine at P1 retained the best anti-chlamydial activity. This study provides a pathway for obtaining clinically relevant inhibitors.


Chlamydia trachomatis/pathogenicity , Peptides/chemistry , Humans , Structure-Activity Relationship
11.
Commun Biol ; 2: 99, 2019.
Article En | MEDLINE | ID: mdl-30886908

The Tasmanian devil (Sarcophilus harrisii) is threatened by a contagious cancer, known as Devil Facial Tumour Disease (DFTD). A highly diverse T-cell receptor (TCR) repertoire is crucial for successful host defence against cancers. By investigating TCR beta chain diversity in devils of different ages, we show that the T-cell repertoire in devils constricts in their second year of life, which may explain the higher DFTD prevalence in older devils. Unexpectedly, we also observed a pronounced decline in TCR diversity and T cell clonal expansion in devils after DFTD infection. These findings overturned the previous assumption that DFTD did not directly impact host immunity.


Marsupialia/immunology , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Computational Biology/methods , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Immunosenescence/genetics , Male , Neoplasms/genetics , Transcription, Genetic
12.
Mamm Genome ; 29(11-12): 731-738, 2018 12.
Article En | MEDLINE | ID: mdl-30225648

Genetic and genomic technologies have facilitated a greater understanding of the Tasmanian devil immune system and the origins, evolution and spread of devil facial tumour disease (DFTD). DFTD is a contagious cancer that has caused significant declines in devil populations across Tasmania. Immune responses to DFTD are rarely detected, allowing the cancer to pass between individuals and proliferate unimpeded. Early immunosenscence in devils appears to decrease anti-tumour immunity in older animals compared to younger animals, which may increase susceptibility to DFTD and explain high DFTD prevalence in this age group. Devils also have extremely low major histocompatibility complex (MHC) diversity, and multiple alleles are shared with the tumour, lowering histocompatibility barriers which may have contributed to DFTD evolution. DFTD actively evades immune attack by down-regulating cell-surface MHC I molecules, making it effectively invisible to the immune system. Altered MHC I profiles should activate natural killer (NK) cell anti-tumour responses, but these are absent in DFTD infection. Recent immunisation and immunotherapy using modified DFTD cells has induced an anti-DFTD immune response and regression of DFTD in some devils. Knowledge gained from immune responses to a transmissible cancer in devils will ultimately reveal useful insights into immunity to cancer in humans and other species.


Facial Neoplasms/genetics , Immune System , Marsupialia/genetics , Neoplasms/immunology , Animals , Cell Proliferation/genetics , Facial Neoplasms/immunology , Humans , Marsupialia/immunology , Neoplasms/genetics
13.
PLoS One ; 13(7): e0200195, 2018.
Article En | MEDLINE | ID: mdl-30011298

There are very few articles in the literature describing continuous models of bacterial infections that mimic disease pathogenesis in humans and animals without using separate cohorts of animals at each stage of disease. In this work, we developed bioluminescent mouse models of partial-thickness scald wound infection and sepsis that mimic disease pathogenesis in humans and animals using a recombinant luciferase-expressing Staphylococcus aureus strain (Xen29). Two days post-scald wound infection, mice were treated twice daily with a 2% topical mupirocin ointment for 7 days. For sepsis experiments, mice were treated intraperitoneally with 6 mg/kg daptomycin 2 h and 6 h post-infection and time to moribund monitored for 72 h. Consistent bacterial burden data were obtained from individual mice by regular photon intensity quantification on a Xenogen IVIS Lumina XRMS Series III biophotonic imaging system, with concomitant significant reduction in photon intensities in drug-treated mice. Post-mortem histopathological examination of wounds and bacterial counts in blood correlated closely with disease severity and total flux obtained from Xen29. The bioluminescent murine models provide a refinement to existing techniques of multiple bacterial enumeration during disease pathogenesis and promote animal usage reduction. The models also provide an efficient and information-rich platform for preclinical efficacy evaluation of new drug classes for treating acute and chronic human and animal bacterial infections.


Bacteremia/drug therapy , Disease Models, Animal , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Wound Infection/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Bacteremia/diagnostic imaging , Bacteremia/pathology , Burns/diagnostic imaging , Burns/drug therapy , Burns/pathology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Microbial Sensitivity Tests/methods , Mupirocin/pharmacology , Staphylococcal Infections/diagnostic imaging , Staphylococcal Infections/pathology , Wound Infection/diagnostic imaging , Wound Infection/pathology
14.
Nat Genet ; 50(8): 1102-1111, 2018 08.
Article En | MEDLINE | ID: mdl-29967444

The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.


Adaptation, Physiological/genetics , Phascolarctidae/genetics , Animals , Australia , Chlamydia Infections/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Female , Genome , Molecular Sequence Annotation/methods , Phascolarctidae/metabolism , Translocation, Genetic
15.
Microbiology (Reading) ; 163(10): 1457-1465, 2017 Oct.
Article En | MEDLINE | ID: mdl-28949902

With the growing demand for new antibiotics to combat increasing multi-drug resistance, a family of antimicrobial peptides known as cathelicidins has emerged as potential candidates. Expansions in cathelicidin-encoding genes in marsupials and monotremes are of specific interest as the peptides they encode have evolved to protect immunologically naive young in the harsh conditions of the pouch and burrow. Our previous work demonstrated that some marsupial and monotreme cathelicidins have broad-spectrum antibacterial activity and kill resistant bacteria, but the activity of many cathelicidins is unknown. To investigate associations between peptide antimicrobial activity and physiochemical properties, we tested 15 cathelicidin mature peptides from tammar wallaby, grey short-tailed opossum, platypus and echidna for antimicrobial activity against a range of bacterial and fungal clinical isolates. One opossum cathelicidin ModoCath4, tammar wallaby MaeuCath7 and echidna Taac-CATH1 had broad-spectrum antibacterial activity and killed methicillin-resistant Staphylococcus aureus. However, antimicrobial activity was reduced in the presence of serum or whole blood, and non-specific toxicity was observed at high concentrations. The active peptides were highly charged, potentially increasing binding to microbial surfaces, and contained amphipathic helical structures, which may facilitate membrane permeabilisation. Peptide sequence homology, net charge, amphipathicity and alpha helical content did not correlate with antimicrobial activity. However active peptides contained a significantly higher percentage of cationic residues than inactive ones, which may be used to predict active peptides in future work. Along with previous studies, our results indicate that marsupial and monotreme cathelicidins show potential for development as novel therapeutics to combat increasing antimicrobial resistance.


Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cathelicidins/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Bacteria/growth & development , Cathelicidins/chemistry , Cell Membrane/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Marsupialia , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Monotremata
16.
Sci Rep ; 7: 44716, 2017 03 16.
Article En | MEDLINE | ID: mdl-28300197

Tasmanian devils (Sarcophilus harrisii) are at risk of extinction in the wild due to Devil Facial Tumour Disease (DFTD), a rare contagious cancer. The prevalence of DFTD differs by age class: higher disease prevalence is seen in adults (2-3 years) versus younger devils (<2 years). Here we propose that immunological changes during puberty may play a role in susceptibility to DFTD. We show that the second year of life is a key developmental period for Tasmanian devils, during which they undergo puberty and pronounced changes in the immune system. Puberty coincides with a significant decrease in lymphocyte abundance resulting in a much higher neutrophil:lymphocyte ratio in adults than subadults. Quantitative PCR analysis of gene expression of transcription factors T-bet and GATA-3 and cytokines interferon gamma (IFN-γ) and interleukin 4 (IL-4) revealed a drastic increase in GATA-3 and IL-4 expression during puberty. These changes led to a significantly lower IFN-γ:IL-4 ratio in 2-year-olds than <1 year olds (on average 1.3-fold difference in males and 4.0-fold in females), which reflects a major shift of the immune system towards Th2 responses. These results all indicate that adult devils are expected to have a lower anticancer immune capacity than subadults, which may explain the observed pattern of disease prevalence of DFTD in the wild.


Marsupialia/immunology , Neoplasms/immunology , Sexual Maturation , Animals , Body Weight , Female , Gene Expression Regulation , Interferon-gamma/metabolism , Interleukin-4/metabolism , Lymphocyte Count , Lymphocytes/metabolism , Male , Neoplasms/blood , Neoplasms/pathology , Neutrophils/metabolism , Progesterone/blood , Th1 Cells/metabolism , Th2 Cells/metabolism
17.
Trends Genet ; 31(9): 528-35, 2015 Sep.
Article En | MEDLINE | ID: mdl-26027792

The Tasmanian devil faces extinction due to a contagious cancer. Genetic and genomic technologies revealed that the disease arose in a Schwann cell of a female devil. Instead of dying with the original host, the tumour was passed from animal to animal, slipping under the radar of the immune system. Studying the genomes of the devil and the cancer has driven our understanding of this unique disease. From characterising immune genes and immune responses to studying tumour evolution, we have begun to uncover how a cancer can be 'caught' and are using genomic data to manage an insurance population of disease-free devils for the long-term survival of the species.


Marsupialia , Neoplasms/genetics , Animal Diseases , Animals , Evolution, Molecular , Extinction, Biological , Female , Genome , Marsupialia/genetics , Marsupialia/immunology , Neoplasms/immunology , Schwann Cells/pathology
...